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SYNOPSIS 

The spontaneous spreading of small liquid droplets on solid surfaces is examined with the 
objective of developing closed-form expressions for the spreading dynamics, both for the 
case in which there is complete equilibrium spreading, that is the equilibrium contact angle 
is Oo, and for the case in which equilibrium spreading is incomplete. Such solutions are 
obtained using a simple hydrodynamic model. The results are consistent with the format 
of the uniuersal Hoffman-Voinov-Tanner law (for complete spreading) and the modified 
Hoffman-Voinov-Tanner law for incomplete spreading. In the latter case, concurrence is 
found only when the dynamic contact angle is close to the equilibrium angle throughout 
the spreading process. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

The kinetics of the spreading of liquid droplets on 
solid substrates is important from a practical point 
of view because the process is central to many spray 
coating operations and from a fundamental point of 
view because its description yields valuable infor- 
mation concerning the nature of solid-liquid inter- 
actions. Numerous studies of the phenomenon have 
been made, as reviewed, for example, by Marmur,' 
de Gennes,2 C a ~ a b a t , ~  and most recently and thor- 
oughly by K i ~ t l e r . ~  The process has been found to 
depend in the most general case on many factors, 
including the liquid surface tension, viscosity (or 
other rheological parameters if non-Newtonian ) , 
density and volatility, solid surface roughness, tex- 
ture and chemical heterogeneity, and drop size. The 
spreading behavior also depends critically on 
whether the equilibrium contact angle is effectively 
0" (complete spreading) or if it is finite. Surface 
tension gradients that may develop during spread- 
ing, as caused by uneven evaporative cooling or 
asymmetric mass transfer in multicomponent drop- 
lets, may also play an important role. If considera- 
tion is limited, however, to completely spreading, 
single-component, nonvolatile, Newtonian liquids 
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spreading on smooth, homogeneous solid surfaces, 
the relevant data of most investigators may be fit 
to a simple power law giving the spreading radius, 
R ,  as a function of time, t :  

in which the empirical constant n generally lies in 
the range 0.1 I n I 0.14, and the proportionality 
factor depends on the drop volume and fluid prop- 
erties. For droplets sufficiently small that the effects 
of gravity may be neglected, experimental results 
suggest n x 0.1. The spreading law may also be ex- 
pressed in terms of the time dependence of the ap- 
parent dynamic contact angle, 8, as pictured in Fig- 
ure l ( a ) .  Under the conditions stated above, the 
droplet will take the form of a spherical cap, and if 
in addition the contact angle is small ( 0  6 ~ / 2 ) ,  the 
linear spreading rate consistent with Eq. ( 1) is given 
by * 

Equation ( 2 )  is consistent with the well-known re- 
sult obtained by Tanner5 and by Voinov' from the 
hydrodynamic analysis of steady-state forced 
spreading, as well as the well-known data of 
Hoffman for the steady forced movement of silicone 
oils in glass capillaries, viz. 
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Figure 1 A small, thin droplet spreading on a solid: (a )  
the spherical cap approximation, (b )  the cylindrical disk 
approximation. 

( 3 )  

where CT is a numerical constant, and Ca is the cap- 
illary number, as defined above, with /I = viscosity 
and u = surface tension. 

It is now well known that the advancing front of 
a completely spreading liquid is preceded by a thin 
precursor foot, whose presence may be verified in a 
number of ways but which is generally invisible to 
the naked eye? The dynamic contact angle in Eqs. 
( 2 )  and (3) refers to the angle that is macroscopi- 
cally observable and not to that which is made be- 
tween the leading edge of the precursor foot and the 
dry solid surface. 

There are very few published data for the dynam- 
ics of spreading of liquid droplets that incompletely 
wet the solid, that is, for which the equilibrium con- 
tact angle, e,, is finite, and only a relatively small 
database for forced wetting under these conditions. 
Hoffman7 suggests that the universality of Eq. (3) 
may be preserved by making use of a shift factor 
accounting for the nonzero nature of the equilibrium 
angle, such that 

The success in fitting data for forced spreading to 
Eq. (4) has been rather limited. Recent experiments 

on the steady forced wetting of partially wet surfaces 
by liquids capable of different types of molecular 
interaction (van der Waals, acid-base) with the solid 
suggest that no parameter beyond an appropriate 
value of 0, is needed to fit the results in each case.g 
The main difficulty in using a relationship of the 
type of Eq. (4) may be in not knowing what equi- 
librium contact angle, O,, to use. Effectively all real 
surfaces have roughness at least at the microscopic 
level so that considerable hysteresis exists between 
the measured static advanced and receded angles. 
Even when 0, is treated as an adjustable parameter, 
however, there is sometimes difficulty in fitting data 
to the format of Eq. (4). 

Whether equilibrium spreading is complete or in- 
complete, what the current literature appears to lack 
is a convenient closed-form relationship, free of ad- 
justable parameters, which can be used to predict 
the spontaneous spreading behavior of droplets on 
horizontal solid surfaces. A simple hydrodynamic 
model, whose results are consistent with the Hoff- 
man-Voinov-Tanner law, Eq. ( 3 ) ,  or its modified 
version, Eq. (4), is proposed below for this purpose. 

THEORY 

We examine the spreading of a small, thin, nonvol- 
atile Newtonian droplet as pictured in Figure 1 ( a ) .  
It will take the form of a spherical cap of constant 
volume V,. Its central height h is much smaller than 
its spreading radius R because its contact angle 19 is 
assumed small ( 0  + 7r /2 ) .  Under these assumptions, 

V - ihR2 
d - 2  

h =  $Re  

To calculate the spreading, consider first the anal- 
ogous situation of a spreading cylindrical disk, as 
shown in Figure 1 ( b )  . We choose both the volume 
and the radius to be equal in the two figures. Then 
from Eq. (5) we note, if the volume of the spherical 
cap is equivalent to the volume of the cylindrical 
disk, v d  = 7rR2h, and h = h/2. Thus the spreading 
will cause a similar decrease in the height of the 
liquid in both figures. We assume, to a first approx- 
imation, that the fluid dynamics of the spreading 
spherical cap approximates that of a spreading cy- 
lindrical disk. We examine the disk spreading in 
quasi-steady laminar Couette flow driven by an ef- 
fective radial surface tension gradient at the upper 
surface given by 
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(7)  

where S e B  is the effective instantaneous spreading 
coefficient. We further assume R % h, so from ( 5 )  

dh 
u, = - 4 u, 

dt 

and in the flow analysis we set u, x 0 in evaluating 
u,(r ,  z ) .  For this model the continuity and r-mo- 
mentum equations for the cylindrical disk are, re- 
spectively, lo 

Substitution of (9)  into ( 10) gives 

We note from Eq. (9)  that the function 4 = ru, is 
a function of z only, so that its substitution into 
( 11 ) , followed by two integrations, yields 

from which 

u, = ( A z  + B )  (13) r 

Applying to (13) the no-slip boundary condition: at 
z = 0, u, = 0 for all r > 0 gives B = 0. Balancing the 
radial shear stress at z = h gives (for u, = 0 ) 

Applying (7)  and ( 13) to ( 14) with B = 0 gives A 
= S e B / p ,  from which (13) becomes 

The surface velocity is given by (15) with z = h ,  
and the average radial velocity at the outer edge r 
= R is 

which we take as the rate of spreading, that is, 

where we note in (16) that h,  R ,  and S,B are all 
functions of time t .  

Although ( 16) and ( 17) give the rate of spreading 
for the cylindrical disk of Figure 1 ( b )  , we want to 
apply the result to the spherical cap of Figure 1 ( a ) .  
To do this we recall that Figures 1 ( a )  and 1 ( b )  were 
chosen to have equal volumes and an equal base 
radius R ,  which gave h = h / 2 .  Therefore, setting 
h = h / 2  gives the rate of spreading for a thin spher- 
ical cap droplet as 

If at t = 0, h = ha, R = Ro, Eq. ( 4 )  gives 

and (19) into (18) gives 

At  equilibrium, Young’s equation l1 gives the bal- 
ance of forces on a unit length of the front as 

where Oe is the equilibrium contact angle, and uSG 

and ~ s L  are the surface energies of the solid against 
the gas and the liquid, respectively. When the drop- 
let is not in equilibrium with its surroundings, the 
forces are not balanced, and the driving force on a 
unit length of front is given by the effective spread- 
ing coefficient, 

seff = uSG - usL - u cos e (22)  

Substituting Young’s equation into (22)  gives 

We are assuming that Oe = Om, the contact angle 
observed at infinite time. For small 0, cos 6 = 1 
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- 8’/2, and (23)  becomes (28)  gives 

where ,f3 = 1 - cos 8,. 

to complete and partial spreading, respectively. 
In the next two sections we apply these equations 

consistent with Eq. (3 ) ,  as required. 
Jiang et al.’s correlation l2 of Hoffman’s data for 

forced wetting inside capillary tubes gives a constant 
closer to 90 than the value of 16 found here for 
spontaneous droplet spreading. However, de 
Gennes’ points out that for forced wetting in cap- 
illaries, the constant might be dependent on the 
capillary diameter. 

COMPLETE SPREADING 

For complete spreading 8, = 0, p = 0, and 

ae * 
S e f f  = - 2 

INCOMPLETE SPREADING 

For the case of incomplete spreading, putting Eqs. 
(24)  and (26)  into Eq. (20)  gives Combining ( 5 )  and ( 6 )  gives 

which with (25)  gives which integrates to the somewhat unwieldy form 

as the instantaneous effective spreading coefficient 
for complete wetting. Combining (20) and (27) gives 

Equation (32)  gives the leading terms of a series 
expansion, which should be sufficient if /3 4 1, that 
is, for cases in which the equilibrium contact angle 
is small. 

To check consistency with the modified Hoff- 
man-Voinov-Tanner law, we substitute Eq. (26) 
into (31)  yielding 

dR - 4aVi 
dt 7r3pR9 

Integrating (28)  from time t = 0, R = Ro to a general 
t i m e t a t R = R ( t ) g i v e s *  

Equation (29)  is the closed-form relationship 
sought for the case of complete equilibrium spread- 
ing. We may examine its concurrence with the Hoff- 
man-Voinov-Tanner law by considering the vari- 
ation of 8( t )  it predicts. Combining ( 17) ,  (26 ) ,  and 

which, upon rearrangement gives 

(34)  

For small O,, cos 8, = 1 - 85/2, SO p = 8,2/2, and 
(34)  becomes 

* The corresponding formula in terms of O( t )  is 

(35) 
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which is the same form as Eq. ( 4 ) ,  but only when 
8, x 8. This may provide a partial explanation for 
the only limited success that has been achieved for 
the fitting of forced spreading data for incompletely 
wetting liquids. 

CONCLUSIONS 

Closed-form expressions free of adjustable param- 
eters have been obtained for the spontaneous 
spreading of small droplets on solid surfaces using 
a hydrodynamic model of a flat circular cylinder in 
quasi-steady Couette flow driven by an effective 
surface tension gradient. The result obtained for the 
case of complete equilibrium spreading, Eq. ( 29), is 
consistent with the functional form of the Hoffman- 
Voinov-Tanner law for forced spreading. For the 
case of incomplete equilibrium spreading, the result 
obtained is consistent with the modified Hoffman- 
Voinov-Tanner law only when the dynamic contact 
angle is close to that of the equilibrium angle 
throughout the spreading process. 

The result obtained for completely spreading liq- 
uids, Eq. ( 29), should be particularly useful for the 
quantitative analysis of data for spontaneous droplet 
spreading. 

NOTATION 

A constant in Eq. (12) 
B constant in Eq. (12) 
R spreading radius 
Ro initial droplet radius 
S,, effective spreading coefficient 
Vd droplet volume 
h spherical cap height 
h0 initial droplet height 

cylindrical disk height 
radial coordinate 
time 
radial velocity of liquid 
interline velocity 
axial velocity of liquid 
axial coordinate 
constant in Eq. (24) ,  1 - cos de 
droplet surface tension 
surface energy of solid 
solid-liquid interfacial energy 
dynamic contact angle 
equilibrium contact angle 
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